Computer Science: Algorithms, Theory, and Machines


This course introduces the broader discipline of computer science to people having basic familiarity with Java programming. It covers the second half of our book Computer Science: An Interdisciplinary Approach (the first half is covered in our Coursera course Computer Science: Programming with a Purpose, to be released in the fall of 2018). Our intent is to demystify computation and to build awareness about the substantial intellectual underpinnings and rich history of the field of computer science.

First, we introduce classic algorithms along with scientific techniques for evaluating performance, in the context of modern applications. Next, we introduce classic theoretical models that allow us to address fundamental questions about computation, such as computability, universality, and intractability. We conclude with machine architecture (including machine-language programming and its relationship to coding in Java) and logic design (including a full CPU design built from the ground up).
The course emphasizes the relationships between applications programming, the theory of computation, real computers, and the field’s history and evolution, including the nature of the contributions of Boole, Shannon, Turing, von Neumann, and others.
All the features of this course are available for free. No certificate will be offered upon completion.

What you will learn


This lesson provides information about the course Computer Science: Programming with a Purpose, which is the precursor to Computer Science: Algorithms, Theory, and Machines.


We introduce and study classic algorithms for two fundamental problems, in the context of realistic applications. Our message is that efficient algorithms (binary search and mergesort, in this case) are a key ingredient in addressing computational problems with scalable solutions that can handle huge instances, and that the scientific method is essential in evaluating the effectiveness of such solutions.


Our introduction to data structures is a careful look at the fundamental stack and queue abstractions, including performance specifications. Then we introduce the concept of linked structures and focus on their utility in developing simple, safe, clear, and efficient implementations of stacks and queues.


The symbol table abstraction is one of the most important and useful programmer’s tools, s we illustrate with several examples in this lecture. Extending the scientific approach of the previous two lectures, we introduce and study binary search trees, a classic data structure that supports efficient implementations of this abstraction.


The theory of computing helps us address fundamental questions about the nature of computation while at the same time helping us better understand the ways in which we interact with the computer. In this lecture, we introduce formal languages and abstract machines, focusing on simple models that are actually widely useful in practical applications.

What’s included