Origins – Formation of the Universe, Solar System, Earth and Life


The Origins course tracks the origin of all things – from the Big Bang to the origin of the Solar System and the Earth. The course follows the evolution of life on our planet through deep geological time to present life forms.

What you will learn

Origin of the Elements, the Solar System and the Planets

In the first module of Origins Jim Connelly and Henning Haack go through the evolution that resulted in the Solar System with the planets that we know today. Jim will tell you about how the elements of the periodic table were formed. Without these elements there would be no Solar System, no planets and no life at all. We have added a couple of more videos that we hope you will also find interesting. One gives you an introduction to Geological time. Videos 1.7-1.9 deals with some of our most interesting meteorites from the collections at the Natural History Museum of Denmark. Much of the evidence for the theories presented in Module 1 has been obtained from meteorites.

The early Earth and origin of life

In this module we are going to have a look at our own planet, just after it formed. Emily Pope will introduce you to the most important geological principles and processes that characterize our Earth. This should make it easier for you to understand how we use geology to reconstruct the evolution of our planet and the life forms that inhabit it. With such tools in hand, Emily will take you on a tour back in deep geological time and tell you about the earliest evolution of our planet and the oldest evidence for life on Earth. We will also take you on a trip to Greenland where Minik Rosing will show the rocks in which he found the oldest evidence for life on Earth.

Origin of the microbial world / The Cambrian Explosion and Exceptional Preservation

In this module Jan Audun Rasmussen and Danny Eibye-Jacobsen will show you how life evolved during the first 4 billion years since the creation of the Earth. As you will see, it is very challenging to study the oldest life forms of our planet. During this enormous time span – which covers about 80% of the Earth’s history – microbial life slowly evolved to form a crucial component of the biosphere. Toward the end of the period the deepest foundations of the different groups of animals evolved. All of the life forms surrounding us today can be traced back to this time.

Transition from Microbial to Macrobial Life: Snowball Earth and the Ediacara Biota / Eukaryotic Evolution and the Phylogeny of All Life

In this module, we take a closer look at how the physical and biological conditions that made the Cambrian Explosion possible arose. In the first lectures Svend Stouge will tell you about the dramatic consequences of climate changes seen toward the end of the Precambrian. Geological evidence supports the idea that the Earth was completely covered in ice during periods that we, for obvious reasons, refer to as Snowball Earth. In the remaining lectures Martin Sørensen will tell you about one of the most significant building blocks of life on Earth – the cell – and how the early bacterial cells evolved and became capable of forming the huge variety of life that we see today. Martin Sørensen will also show how different evolutionary trends of cells resulted in six major organism groups, of which several gave rise to multicellular life.

What’s included